Maemo Diablo More Widgets

Training Material

February 9, 2009

Contents

1 More Widgets 2
11 UsingmenusinHildon. 2
12 Addingtoolbars L 8
1.3 Designing ApplicationState 11
14 Processingkeyevents. 23
1.5 AddingFile-dialogs 26
1.6 Wheretogonext? 29
17 Conclusions o 30

Chapter 1

More Widgets

1.1 Using menus in Hildon

Since each application view will have only one menu, how can you implement
multiple menus in an application as you’d do by using a menu bar? One
solution to this (taken in the maemo framework) is to build hierarchical menus
and put them under the top level menu.

In this way, you might think that the top-level menu is actually acting as
a menu bar for your application, but since you have multiple view possibility,
you will have to think about how to organise them around your application. Try
to keep your GUI design consistent with existing applications that use Hildon,
so that the user will not have to learn different models of doing things.

We will now extend our menu so that it will include a sub-menu for selecting
styles and the style menu will also demonstrate how to use checkbox and radio
style menu items.

We'll also introduce a GTK+ convenience function while building the sub-
menu and extend our menu callback function to handle the new items from the
style menu.

Since there is a lot of new code, the whole source for the new version is
presented below:

Vii
* hildon_helloworld-3.c
* This maemo code example is licensed under a MIT-style license,
* that can be found in the file called "License" in the same
* directory as this file.
* Copyright (c) 2007-2008 Nokia Corporation. All rights reserved.

e now add a submenu with radio and check menu items.

* Look for lines with "NEW" or "MODIFIED" in them.
*/

#include <stdlib.h>
#include <gtk/gtk.h>
#include <hildon/hildon-program.h>

/* Menu codes. */

Listing 1.1: New version with sub-menu and toggle items (hildon_helloworld-
3.0)

v Hello Hildon!

Open

Save

Style v Underline

Quit e |talic
Normal

Hello Hildon (with submenus)!

As you can see, implementing even simple GUI programs with GTK+ is
somewhat tedious if you've used graphical dialog editors before. Also the
programming language isn’t really object-oriented, so you end up typing more.

This is why there are several approaches into building GUIs in a more
automatic way (XML-based descriptions seem to be rather the hype right now).
These tools will not be covered in this material because it still is useful to know
what the code generated by the tools does. Also, tools get out of date with
respect to GTK+ itself quite often and might use deprecated APIs or have other
issues.

1.2 Adding toolbars

GTK+ has a rich toolbar widget which can hold different kinds of sub-widgets.
All of these sub-widgets must be of the GtkToolltem-class. So, even when
adding labels, icons or ordinary GtkButtons, you will need an GtkToolltem
widget to "hold them". This is because toolbars support tool hiding, detaching
and other finer actions of a modern graphical environment, and these actions
need partly to be implemented at the individual toolbar item level. Most of the
more advanced features of GtkToolbar will have limited value when running
applications that use maemo.

We'll add buttons for couple of the file-menu operations first. We’ll also
add a button to do searching and for selecting a color:

Vid
* hildon_helloworld-4.c

10

Listing 1.2: Code that adds a toolbar and a color selection button
(hildon_helloworld-4.c)

11

v Hello Hildon!

Running the application

1.3 Designing Application State

Next we’d like our Find-button to actually do something. We could create
a callback that would be called when we’d press the button (signal name for
catching thatis "clicked"). The problem is this: what do we pass to the callback
so that it can actually control the search toolbar? In our program we want to be
able to change the visibility of the toolbar. We also want to let the user control
whether the main toolbar is visible or not since the user might not need it all of
the time.

How to achieve this? This is where our program will start looking more
like a real program instead of a toy. So far we’ve used the gpointer parameter
in g_signal _connect to pass immediate data related to the particular signal
connection. In many cases the callbacks need to modify some data structures
that our application has and do other more complicated things as well, so
clearly this approach has some limitations.

So, we create a structure that will hold our application data and call it
ApplicationState. In our main, we’ll store one instance of this structure into
main’s stack (which doesn’t go away during execution of our program) and
will fill that with useful data. We'll start with pointers to some widgets whose
visibility we want to control and we’ll also store the color that user has selected.

The following changes will be made to the program:

e Weneed to restructure our menu-handling callback because we'll pass the
application data structure as a parameter each time. This means that we
cannot use the last parameter to pass the menu command/action anymore.
This will also cause the enumeration to go away.

o The restructuring also makes it quite difficult to reuse the same callback

12

function to handle multiple signals, so we'll switch into having one call-
back function per signal and fill in the code for them later on.

e Some of our callbacks will switch visibility of widget trees. In order to
get a pointer to the widget tree, we'll need to save pointers to the root
widgets of the widget trees.

e We'll add an option to the main menu to switch visibility of the main
toolbar.

e We'll add a specialised toolbar for searching.

o We'll demonstrate some way of printing debugging and informational
messages.

Since most of our program changes now, we’ll present the whole code for
hildon_helloworld-5.c (yes, we're quickly becoming masters of the Hello Worlds).
Be sure to experiment with the code as well.

/'A‘:!‘
* hildon_helloworld-5.c

* This maemo code example is licensed under a MIT-style license,
that can be found in the file called "License" in the same

* directory as this file.

Copyright (c) 2007-2008 Nokia Corporation. All rights reserved.

Adds proper an application state and modifies all of the existing
functions to use application state. Also adds a Hildon Find

* toolbar. Most of the existing code needs to be modified or split
up.

*/

#include <stdlib.h>

#include <hildon/hildon-program.h>

#include <hildon/hildon-color-button.h>

/% Pull in the Hildon Find toolbar declarations (NEW). */
#include <hildon/hildon-find-toolbar.h>

/* Declare the two slant styles. */
enum {
STYLE_SLANT_NORMAL = 0,
STYLE_SLANT_ITALIC
s

/a‘t*
* This is all of the data that our application needs to run
* properly. Rest of the data is not needed by our application so we
* can leave that for GTK+ to handle (references and all).
:’:/
typedef struct {
/* Underlining active for text? Either TRUE or FALSE. */
gboolean styleUseUnderline;
/* Currently selected slant for text. Either STYLE_SLANT_NORMAL or
STYLE_SLANT_ITALIC. */
gboolean styleSlant;

/* The currently selected color. */
GdkColor currentColor;

13

14

15

16

17

18

19

20

21

22

Listing 1.3: Hello World as an proper application! (hildon_helloworld-5.c)

When you're testing the program, be sure to notice how visibility of the
toolbars affects the area available for the rest of the application. The label will
always be centered inside the area that has been allocated to it.

23

v Hello Hildon!

Hello Hildon (with Hildon-search
and other tricks)!

Find Going for the big 9| g X
BEH @ W

] qg|wle|rlitlylulilo|pl®@ | |1]2]|3 P
ABC als|dlflglhljlk]jI];l"[!|[|4]5]6 -
Shift Zixlcliviblnim| | .I/1 ? 7 8 9 &b
" -1 0] = Y

Figure 1.1: Our program with both toolbars and the VKB.

The Virtual Keyboard (VKB from now on) will be displayed automatically
with Hildon widgets whenever the user will activate a widget used to input
text. On Internet Tablets, displaying the VKB will not be done if the device has
a hardware keyboard.

1.4 Processing key events

In order to implement actions when the user will press the hardware buttons
on target devices, we need to handle the button events somehow. We'll next
demonstrate this by catching the fullscreen keypress and implement "manual”
switching of the fullscreen state for our application. Implementing fullscreen
support is much easier in real life than the following code, see the end of this
section for an explanation. We’ll do it "manually” so that we can demonstrate
hardware key handling in a simple way.

We'll add an item into our main menu that can be used to switch into
fullscreen mode. To get back from fullscreen, we’ll need to learn how to
capture keyboard events (the hardware button is implemented in GDK as a
ordinary keyboard key press). We will process the key press so that it will
toggle fullscreen mode on and off.

* hildon_helloworld-6.c

* This maemo code example is licensed under a MIT-style license,
* that can be found in the file called "License" in the same

* directory as this file.

* Copyright (c) 2007-2008 Nokia Corporation. All rights reserved.

* Continuing from helloworld-5, we add fullscreen toggling and key
* press handling (to get back from fullscreen).

24

25

26

hildon_window_add_toolbar (HILDON_WINDOW(aState.window),
GTK_TOOLBAR(mainToolbar)) ;

hildon_window_add_toolbar (HILDON_WINDOW(aState.window),
GTK_TOOLBAR(findToolbar));

/% Register for keypresses inside GTK+ (NEW).
NOTE :
A key-event handler connected to the top-level widget will get
all the keypresses first. If you want to pass the event deeper
into the widget hierarchy, you’ll need to tell (inside your
callback function) that you didn’t handle it. This is a
different model from most other graphical toolkits. */
g_signal_connect (G_OBJECT (aState.window), "key_press_event",
G_CALLBACK (cbKeyPressed), &aState);

g_print("main: calling gtk_main\n");
gtk_main();

g_print("main: returned from gtk_main and exiting with success\n");

return EXIT_SUCCESS;

Listing 1.4: Fullscreen and keypress handling (hildon_helloworld-6.c)

Hello Hildon (with fullscreen)

Find All this screen estate and | only got a hello. > x

e

EE @ W

Fullscreen mode with main toolbar open

The point of the previous program was to demonstrate how you can catch
keypresses. The topic in reality is quite complex because keypresses travel
through so many different software layers. A keypress will first be detected
and processed by the kernel input device driver. The kernel driver will then
forward the event to the X server which will hand the event to the application
that has the current window focus. Inside the application, the GDK layer will
see the keypress and propagate it onwards as a GTK+ signal, at which point
it might arrive at some callback (depending on which widget had the focus at
the time of the keypress).

27

1.5 Adding File-dialogs

In order to let the user to select which file to open or save, we need some kind of
a dialog to choose files. Instead of building our own (which would be counter
productive even in GTK+), we'll use the one that is included in Hildon.

Since we’ll want to create both kinds of file choosers (one for saving, the
other for opening) we’ll create yet another utility function which will display
the dialog with the required style and return a filename. Note that the filename
will be allocated by GTK+ and we'll need to free it after we’re done with it.

28

29

g_print(" you didn’t choose any file to open\n");
}
}

/:‘::“
* MODIFIED
* Asks the user to select a file to save into (same logic as in
* cbActionOpen above, just the style of the dialog is different).
*/

static void cbActionSave (GtkWidget* widget, ApplicationState* app) {
gchar* filename = NULL;

g_assert(app !'= NULL);
g_print("cbActionSave invoked\n");

filename = runFileChooser(app, GTK_FILE_CHOOSER_ACTION_SAVE);
if (filename) {

g_print(" you chose to save into ’'%s’\n", filename);

/* Process saving .. */

g_free(filename) ;
filename = NULL;
} else {
g_print(" you didn’t choose a filename to save to\n");
}
}

Listing 1.5: Adding file choosing dialogs (hildon_helloworld-7.c)

In order to use the file chooser widget, you'll also need to link against the
hildon-fm-2 library (using pkg-config, just like you do with hildon-1).

v Hello Hildon!

= .=)j document.doc
(@ Audio clips — 12/11/07 09:13:...
@ Documents __}j sheet1.xls
(2§ Games 1= 12/11/07 09:13:...
(2 Images
& Video clips

Cancel

Dialog for opening files

30

v Hello Hildon!

Name: |VerylmportantData.txt]
Location: &3

OK Change folder Cancel

] qg|wle|rlitlylulilo|pl®@ | |1]2]|3 P
ABC als|dlflglhljlk]jI];l"[!|[|4]5]6 -
Shift ZIxlcivibinimi, Il .l/] ? 789 &6
Ek -l 0] = ¥

Dialog for selecting filename to save to

You really need to experiment with the dialogs to see what they offer. Con-
sidering the limited screen estate available on an Internet Tablet, the dialogs
manage to provide quite a lot.

1.6

Where to go next?

Needless to say both GTK+ and Hildon are full of useful widgets that you
should start exploring and using.
Links into deeper recesses of GTK+ and Hildon

The master API documentation index at maemo.org. It includes to the
versions of documentation which are used in maemo SDK, so it should
be the preferred starting point when looking for more information.

The GTK+ 2.0 tutorial (gtk.org) is definitely worth going through. It
is quite large and tries to be comprehensive but at the same time fails
to be current with respect the GTK+ APL Please try to verify that the
API-functions that you see used in the tutorial are current by checking
the GTK+ API documentation. The obsolete functions are marked as
"deprecated"” in their documentation part. Not many people do this and
that leads to obsolete functions being used quite liberally.

The GTK+ reference can be found at maemo.org.
There is no current GDK tutorial (unfortunate).

There is however the GDK API reference at maemo.org. Intermingled
with the documentation there are some examples as well.

31

http://maemo.org/development/documentation/apis/
http://www.gtk.org/tutorial/
http://maemo.org/api_refs/
http://maemo.org/api_refs/

The GTK+ and GDK library source distribution contains a lot of example
programs which are kept almost to date (at least you see the modification
timestamps on when of their last modifications ;-).

Reading the header files has helped more than once as well, so get ac-
quainted with /usr/include/gtk-2.0/ subdirectories as well as /usr/include/hildon-
* directories.

When all else fails, you can read the source code of GTK+ (which is written
in a clear and consistent manner, albeit without too many comments) and
of course the source code for most of the Hildon widgets is available with
apt-get source hildon-1 .

If you know that you will be working with Hildon and GTK+ a lot, you
should join the respective mailing lists (maemo-developers@maemo.org and
gtk-app-devel@gnome.org) and read the archives of mailing lists. Nowadays
search engines are able to locate snippets of valuable information from these
lists as well.

1.7

Conclusions

It will take you a while to get used to the GTK+ way of doing graphics (or
indeed anything). However, time spent learning will pay off quite soon since
the API for most parts is quite simple.

You just need to remember to check and recheck that API functions that you
use. Try to avoid deprecated functions as your software may be compiled with
flags that will disable the deprecated functions altogether and then you’ll need
to fix a lot of problems (and learn the new API anyway).

Rules of thumb with GTK+:

Familiarise yourself with widget inheritance trees. Sometimes the func-
tion you're looking for is really implemented at a higher level up the
inheritance.

There are probably multiple ways of achieving what you're trying to do.
Try to use the simplest interface that is not obsolete (not always easy).

Select your pointer types according to their use. If you will be passing
your widgets to functions that accept mostly GtkWidget*-types, it will be
easier to type and read if you use a GtkWidget*-pointer to start with (or
using GtkToolltem* as we did with our example).

If you don’t think that the API documentation is complete, read the GTK+
source (it’s not that bad, compared to many other open source projects).

Ask your colleagues

Read what others have used (but again be very careful about obsolete
code).

Good luck!

32

	More Widgets
	Using menus in Hildon
	Adding toolbars
	Designing Application State
	Processing key events
	Adding File-dialogs
	Where to go next?
	Conclusions

